Electron storage ring based tabletop light source, MIRRORCLE for protein crystallography

> Hironari Yamada SLLS Ritsumeikan University

contents

- 1. What is MIRRORCLE
- 2. MIRRORCLE is a storage ring which generate extremely bright FIR
- 3. How to generate hard x-rays by a few MeV storage ring
- 4. How it's different from synchrotron light source or X-ray tube.
- 5. Beam line, in which different energy is extracted to the same direction by a single monochrometer
- 6. Demonstration of Dispersive EXAFS
- 7. Intensity of monochromatic beam is enough to proceed crystallography
- 8. Small angle scattering is advanced with MIRRORCLE

MIRRORCLE is a low energy, tabletop electron storage ring

MIRRORCL 20SX

単色X線 (8~30keV)、軟X線、EUV 遠赤外線、硬X線(10~20000keV)

X-ray characterization EUV lithography

2003年稼動

直径 60cm

MIRRORCLE 6X (6FIR)

FIR spectroscopy

MIRRORCLE CV4 X-ray imaging, NDT

MIRRORCLE-CV1

Medical imaging X-ray microscope

MIRRORCLE is a storage ring

4A beam current is accumulated Damping time:10msec, lifetime:1min without target

The observed maximum temperature of the beam 300deg C represent 4A beam current, and 0.63mW/B.W. at 11µm wavelength

100

外

$$I = \frac{P_s(T, \omega, \Delta \omega) A d\Omega}{p_s(\omega) \Delta \omega d\Omega}$$

= $\frac{\int_{\Delta \omega} \frac{w^2}{\pi^2 c^3} \frac{\hbar \omega}{\exp(\hbar w/kT) - 1} d\omega A}{p_s(\omega) \Delta \omega}$
 $\approx \frac{w^2}{\pi^2 c^3} \frac{\hbar \omega}{\exp(\hbar w/kT) - 1} \Delta \omega A}{p_s(\omega) \Delta \omega}$

内

How to generate hard x-rays by a few MeV electron storage ring

The observed X-ray power is 225mGy/min at 150mA injector peak current and 400 Hz repetitions

Measured by the ion chamber

800W storage ring RF power is applied

Carbon nano tube target is one of the best

MIRRORCLE generate cone beam

Measure X-ray flux

MIRRORCLE^{RAY}-20SX X-ray Intensity is compared with that of reguler 1kW tube light sources(In the atmosphere).

	20SX	1kW tube
Radiation Mechanism	electron X-Ray Target	
Crystal	sagittal bent crystal	
Target	Be 0.1mmThickness 0.8mm width	Мо
X-ray energy [KeV]	17	
intensity [mR/pixel]	138	10
Distance from source point [m]	3.1	2.6
Width of sagittal bent crystal [±mrad]	6.2	3.1
Intensity [mR/pixel/mrad]	11.1	1.6
Focused beam size [mm]	1	5
Normalized Intensity by the diffraction efficiency [mR/pixel]	25566	1202

Why MIRRORCLE is bright?

Mode is fixed by the target. All electron approaches the target again in the next collision.

Repeat injection at 400Hz (Max intensity is the subject of repetition rate)

Betatron tune is near 0.5

How it's different from synchrotron light source and X-ray tube

Advantage of small emission point

• fine space resolution in the imaging

• fine energy resolution with monochrometer

Configuration of magnified imaging

Imaging plate

Imaging Plate: ST-VI(standard) Reader: FCR-XG1(FUJIFILM Co.) 150 μ m/pixel Dynamic range 12bit

100 times magnification and 1 μm size emitter appreciate 1.5μm space resolution with 150um detector

10L = 3750

(10 times

Polychromatic beam is useful which include more information

target size: 25 μ m φ
Detector: Imaging plate
(FUJIFILM XG-1 150 μ m/pixel)

PHYSICS TODAY

JULY 2000

A NEW PHASE FOR X-RAY IMAGING

White Laue and Topography at 1.5 m dist.

Energy resolution of monochrometer

 $\Delta E / E = (\sqrt{\Delta \theta^2 + \Delta \tau^2} + \frac{\Delta S}{l}) \cot \theta_B$

 $\Delta \theta$: slit opening $\Delta \tau$: width of Bragg refraction (~10⁻⁵) ΔS : light source size 1: distance from the source

 $\boldsymbol{\theta}_{\mathsf{B}} \text{:} \text{Bragg angle}$

Detector size: 0.1mm

monochro:Si(111)	Source ssize [µm]	Source-detector [m]	Energy resolution E/ΔE
Photon Factory	100	25	5000
MIRRORCLE	10	3	5000
MIRRORCLE	1	1	5100
Short beam line			eam line

Advances of widely spread radiation from small emitter and polychromatic beam

- $1(10)\mu m \phi$ wire target provide E/ Δ E=5000(3000) at 1m distance
- 50mrad spread gives 2keV dispersion

Beam line layout

This facility was originally designed for LIGA and lithography

Beam line view

Rigaku Mercury CCD was no good

Dispersive EXAFS

Dispersive XAFS

Mo10mm

DXAFS spectrum was taken in one hour 1 hour>required troidal mirror>3.6sec

Dispersive XAFS Mo10µm

Present MIRRORCLE's beam quality and photon density is enough for protein crystallography!

Results of 3 hours accumulation

Detector: IP (Rigaku R-AXIS) Photon Energy :14keV Source-Detector: 3m

S:300,000/pixel S/B~4,200 BG:70 Problem is the background

Way to manage problems

- Introduction of specific shielding
- High energy resolution short beam line
- Introduction of vertically focusing elements

MIRRORCLE-20 shielding system

Plane schematic view

Vertical view

Specific beam line designing is necessary

This scheme is feasible by MIRRORCLE because of its white X-ray!

Measurement of protein shape by the small angle scattering CT feasible by MIRRORCLE We combines SAXS and fan beam CT to measures nano to 100nm size particles and structure

MIRRORCLE enables the measurement of shape and structure of protein by using narrowly collimated fan beam. Small angle scattering and CT is combined

1 μm gap is feasible by 1 μm target of MIRRORCLE

1~100nm particle could be distinguished

summary

- Widely spread polychromatic X-ray beam generated from tiny emitter of MIRRORCLE is extremely useful in material characterization, protein crystallography, and imaging
- Protein crystallography is possible in minutes with present power of MIRRORCLE with particularly designed beam line and specific shielding structure